D-MATH	Analysis 3	ETH Zürich
Prof. M. Iacobelli	Serie 10	HS 2022

10.1. Unique solution

Let k > 0. Let D be a bounded planar domain in \mathbb{R}^2 . Let u = u(x, y) be a solution to the Dirichlet problem for the reduced Helmholtz energy in D. That is, let u solve

$$\begin{cases} \Delta u(x,y) - ku(x,y) = 0, & \text{for } (x,y) \in D, \\ u(x,y) = g(x,y), & \text{for } (x,y) \in \partial D. \end{cases}$$

Show that there exists at most a unique solution twice differentiable in D and continuous in \overline{D} , that is, $u \in C^2(D) \cap C(\overline{D})$.

Hint: Assume that there exist two solutions u_1 and u_2 , and consider the difference $v = u_1 - u_2$.

10.2. The mean-value principle Let D be a planar domain, and let $B_R((x_o, y_o))$ (ball of radius R centered at (x_o, y_o)) be fully contained in D. Let u be an harmonic function in D, $\Delta u = 0$ in D. Then, the mean-value principle says that the value of uat (x_o, y_o) is the average value of u on $\partial B_R((x_o, y_o))$. That is,

$$u(x_{\circ}, y_{\circ}) = \frac{1}{2\pi R} \oint_{\partial B_R((x_{\circ}, y_{\circ}))} u(x(s), y(s)) \, ds = \frac{1}{2\pi} \int_0^{2\pi} u(x_{\circ} + R\cos\theta, y_{\circ} + R\sin\theta) \, d\theta.$$

Show that $u(x_{\circ}, y_{\circ})$ is also equal to the average of u in $B_R((x_{\circ}, y_{\circ}))$, that is,

$$u(x_{\circ}, y_{\circ}) = \frac{1}{\pi R^2} \int_{B_R((x_{\circ}, y_{\circ}))} u(x, y) \, dx \, dy.$$

10.3. Maximum principle Consider the disk $D := \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\}$. Let u = u(x, y) be a function twice differentiable in D and continuous in \overline{D} , solving

$$\begin{cases} \Delta u(x,y) = 0, & \text{in } D, \\ u(x,y) = g(x,y), & \text{on } \partial D, \end{cases}$$

for some given function g.

(a) Suppose $g(x,y) = x^2 + \frac{2}{\sqrt{2}}y$. Compute u(0,0) and $\max_{(x,y)\in \bar{D}} u(x,y)$.

(b) Suppose now that g is any smooth function such that $g(x, y) \ge (3x - y)$. Show that $u(1/3, 0) \ge 1$, with equality if and only if g(x, y) = 3x - y.

Hint: the function 3x - y *is harmonic.*

10.4. Multiple choice Cross the correct answer(s).

December 5, 2022

(a) Consider the Neumann problem for the Poisson equation

$$\begin{cases} \Delta u = \rho, & \text{in } D, \\ \partial_{\nu} u = g, & \text{on } \partial D, \end{cases}$$

where D = B(0, R) is the ball of radius R > 0 with centre in the origin of \mathbb{R}^2 , and ρ and g are given in polar coordinates (r, θ) by

$$\rho(r,\theta) = r^{\alpha} \sin^2(\theta)$$
, and $g(r,\theta) = C \cos^2(\theta) + r^{2021} \sin(\theta)$,

for some constants $\alpha > 0$ and C > 0. For which values of C > 0 does the problem satisfy the Neumann's *necessary* condition for existence of solutions?

$$\bigcirc C = \frac{R^{\alpha+1}}{\alpha+2} \qquad \bigcirc C = \frac{R^{\alpha+2}}{\alpha+2}$$
$$\bigcirc C = \frac{R^{\alpha+1}}{\alpha+1} \qquad \bigcirc C = \frac{R^{\alpha+1}}{\alpha-1}$$

(b) Consider the Dirichlet problem

$$\begin{cases} \Delta u = 0, & \text{in } D, \\ u = \frac{x}{x^2 + y^2} & \text{on } \partial D. \end{cases}$$

where the domain D is the anulus defined by $D := \left\{ (x, y) \in \mathbb{R}^2 : 1 < \sqrt{x^2 + y^2} < 2 \right\}$. What is the maximum of u?

$$\bigcirc \frac{1}{2} \qquad \bigcirc \frac{1}{4} \\ \bigcirc 1 \qquad \bigcirc -1$$

Extra exercises

10.5. Weak maximum principle Let B_1 denote the unit ball in \mathbb{R}^2 centered at the origin, and let u = u(x, y) be twice differentiable in B_1 and continuous in $\overline{B_1}$. Suppose that u solves the Dirichlet problem

$$\begin{cases} \Delta u(x,y) = -1, & \text{for } (x,y) \in B_1, \\ u(x,y) = g(x,y), & \text{for } (x,y) \in \partial B_1. \end{cases}$$

Show that

$$\max_{\bar{B}_1} u \le \frac{1}{2} + \max_{\partial B_1} g$$

Hint: search for a simple function w such that $\Delta w = 1$, and use it to reduce the problem to an application of the weak maximum principle for harmonic functions.

December 5, 2022